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ABSTRACT

Hermitian codes are an attractive alternative to Reed-
Solomon codes for use in frequency-hop (FH) spread-
spectrum packet radio networks. For a given alphabet size
a Hermitian code has a much longer block length than a
Reed-Solomon code. This and other considerations suggest
that Hermitian codes may be superior for certain applica-
tions. Analytical results are developed for the evaluation of
the packet error probability for FH transmissions using Her-
mitian coding. We find there are several situations for which
Hermitian codes provide much lower packet error probabili-
ties than can be obtained with Reed-Solomon codes. In gen-
eral, as the code rate decreases or the symbol alphabet size
increases the relative performance of the Hermitian codes
improves with respect to the Reed-Solomon codes. Perfor-
mance evaluations are presented for an additive white Gaus-
sian noise channel and for certain partial-band interference
channels, and the packet error probability is evaluated for
both errors-only and errors-and-erasures decoding.

INTRODUCTION

Reed-Solomon codes have been adopted for a wide range of
applications [1] including the SINCGARS slow-frequency-
hop packet radio [2]. Hermitian codes, which are not as well
known as Reed-Solomon codes, offer some of the same ben-
efits, but they also have the potential for extending the effec-
tive range of the frequency-hop (FH) transmissions beyond
that attainable with Reed-Solomon codes. This potential is
due to the fact that for the same alphabet size M the block

length of a Hermitian code is longer by a factor of v/M than
the block length of a Reed-Solomon code, and this provides
a performance advantage in combating Gaussian noise.

As an example we consider Hermitian and Reed-Solomon
codes that have an alphabet of size M = 16, the Hermitian
code words are of length 64 and the singly extended Reed-
Solomon code words are of length 16. Thus the number of
code symbols in one Hermitian code word is equal to the
total number of code symbols in four Reed-Solomon code
words. Similarly if M = 64 the length of one Hermitian
code word is equal to the combined length of eight Reed-
Solomon code words. In general if the code rate and the
number of information bits per packet are the same for the

two codes, there are vV M more code words per packet for
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Reed-Solomon coding than for Hermitian coding. This al-
lows the Hermitian code to correct combinations of errors
that are not correctable by the Reed-Solomon code.

The results presented in this paper permit the evaluation of
the packet error probability for FH transmission with Reed-
Solomon coding or Hermitian coding. Analytical results are
given for both the additive white Gaussian noise channel and
the partial-band catastrophic-interference channel. This lat-
ter channel is a good model for strong partial-band jamming
or FH multiple-access interference. For values of M of in-
terest in this paper, the defining feature of the partial-band
catastrophic-interference channel is that the probability of er-
ror is approximately one for an M-ary symbol that transmit-
ted in a frequency slot containing interference. Numerical re-
sults on the packet error probability are given for both chan-
nel models and for both errors-only and errors-and-erasures
decoding.

Performance comparisons based on the bit error probabil-
ity, rather than the packet error probability, are given in [3]
for Hermitian and Reed-Solomon codes. These results are
limited to the additive white Gaussian noise channel. Even
for this channel model the bit errors at the decoder output are
statistically dependent, so the packet error probability can-
not be determined from the bit error probability. Because
we also consider the partial-band interference channel, the
performance comparisons provided in this paper are more
appropriate for the typical operating environment of a FH
packet radio network.

SYSTEM DESCRIPTION

In this paper a singly-extended RS code is designated by
(nr,kr,dr) M, where M is the size of the symbol alphabet
and dg is the minimum distance of the code. For a singly-
extended RS code np = M, and since RS codes are max-
imum distance separable dg = ngp — kr + 1. In a simi-
lar manner, a Hermitian code is denoted by (ng, kg, der) umr-
As explained in [4], Hermitian codes do not exist for all
values of M. We consider the class of Hermitian codes
for which M = 4%, where z is a positive integer. The
block length for a Hermitian code with alphabet size M is

ng = MVM = 8. The range of values for kg for Her-
mitian codes is given in [5]. Finally, in [5] the authors show
that a lower bound on the minimum distance for a Hermitian
codeisdg > d = ng — kg — (M — v/M) + 1. For the
performance evaluations presented in this paper it is assumed
that the minimum distance is exactly d.

The applications considered in this paper are for binary
modulation, so the M-ary code symbols are transmitted as
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Figure 1. Paé:ket formats

m = log, M binary symbols. Equal-energy orthogonal sig-
nals are employed with standard noncoherent demodulation
and bounded-distance decoding.

Performance comparisons are based on the packet error
probability, and so for a fair comparison the packet size is
the same for each system. The packet format for each type
of coding is illustrated in Figure 1. For Hermitian coding
there is one code word per packet, and for RS coding there

are I, = v/M code words per packet. For the packet formats
illustrated in Figure 1, all of the symbols in a row are trans-
mitted in the same dwell interval, and each row corresponds
to a different dwell interval. The transmission of a packet
requires M consecutive dwell intervals regardless of which
code is used.

PERFORMANCE EVALUATIONS

In this section the performance of FH systems with Her-
mitian codes is compared to the performance of systems
with RS codes for two types of channels. The packet er-
ror probabilities for the systems with RS codes are derived
from the analytical expressions given in [6]. Analytical ex-
pressions are developed for the packet error probability for
FH packet radios with Hermitian coding for both an addi-
tive white Gaussian noise channel and a channel with catas-
trophic partial-band interference.

A. ADDITIVE WHITE GAUSSIAN NOISE CHANNEL

The first performance comparison we present is for Her-
mitian codes and RS codes for an additive white Gaussian
noise (AWGN) channel and errors-only decoding. An errors-
only decoding algorithm for Hermitian codes is given in [7].
Since bounded distance decoding is employed, a received
word is decoded correctly if twice the number of errors in
the received word is less than the minimum distance of the
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code. Otherwise a decoding error or decoding failure oc-
curs. Cyclic redundancy check (CRC) codes or other error-
detecting codes are employed to detect decoding errors, al-
though such errors are rare for RS codes and errors-only de-
coding unless n — k is very small [8]. If a received word
at the decoder input produces a code word at the decoder
output in which no errors are detected, we say the received
word decodes. If a received word at the decoder input either
does not produce a code word at the decoder output (decod-
ing failure) or produces a code word in which errors are de-
tected (decoding error), we say that received word does not
decode. A packet error occurs if at least one received word
in the packet does not decode.

The performance curves presented in this paper show the
probability of a packet error as a function of the quiescent
error probability g, which is defined as the probability a bi-
nary symbol is in error The probability p of a channel symbol
erroris p = 1—(1—q)™, where m = log, M. The probabil-
ity of a packet error for the system employing the Hermitian
codes is

Po=1-3° (") - gyt
e = Z " p'(1—p) )

t=0

where tgr = |28=1| and |z] denotes the integer part of the
real number z. The parameter g is the maximum number
of errors a received word can contain and still decode.

Performance comparisons for Hermitian codes and RS
codes are shown in Figure 2. The results in Figure 2 are for
rate 1/2 codes for M = 16 and M = 64. For each symbol
alphabet size the Hermitian codes outperform the RS codes.
For M = 16 and arate 1/2code, dg = 27,dg = 9, and there
are 4 RS code words per packet. The maximum number of
errors that can be corrected per packet is greater for the RS
code (16) than for the Hermitian code (13), but as illustrated
in Figure 2 the Hermitian code results in better performance.
The reason for this apparent contradiction is that unlike for
the RS code the decoding of a packet for the Hermitian code
does not depend on the distribution of the errors within the
packet.

The communication range for systems with Hermitian



codes is greater than the range of systems using RS codes.

Let the desired packet error probability be 10~ and consider
two systems that have a fixed transmitter power level and the
same receiver noise figure. One system employs Hermitian
coding and the other system uses RS coding. Assume that
the received power is inversely proportional to the square of
the distance between the transmitter and receiver. For the
systems of Figure 2 the communication range for the Her-
mitian codes is approximately 10% greater than the range of
RS codes.

B. PARTIAL-BAND INTERFERENCE CHANNEL

In this section the performance of FH packet radios is de-
termined for channels with partial-band interference. The
partial-band interference is catastrophic [6], which means
that the probability that a binary symbol is in error is 1/2
given that the symbol is transmitted in a frequency slot that
has interference. The probability that a binary symbol is er-
ror given that it is transmitted in a frequency slot with no
- partial-band interference is g, the quiescent probability of
error. Let p denote the fraction of the frequency slots that
contain interference. A dwell interval that contains partial-
band interference is said to be hit. Thermal noise is present
in all of the dwell intervals. For a symbol transmitted in a
frequency slot with catastrophic partial-band interference the
probability of erroris 1 — M —1, For the expressions derived
in this section we assume that an M-ary symbol transmitted
in a dwell interval with partial-band interference is received
in error.

Since there is only one Hermitian code word per packet,
the probability of a packet error is the same as the probabil-
ity that a received word does not decode. For a catastrophic
partial-band interference channel the packet error probabil-
ity for a system that uses Hermitian coding and errors-only
decoding is

{tr/L]
P=1- Y (Jf)pf(l — M-IP(j),
j=0

where P(j) is the conditional probability that a received
word decodes given that there is partial-band interference in
4 dwell intervals. There are L symbol errors for every dwell
interval that is hit, and thus as long as at most [tz /L] dwell
intervals are hit the error-correcting capability of the code is
not exceeded.. Since there are Lj symbol errors from partial-
band interference, the received word decodes as long as there
are not more than tg — Lj errors in the ng — Lj remaining
symbols. Therefore we can express P(j) as

y—Lj .
P(j) =t2] (nH—LJ

. )pt(l —pyraH

t=0

Packet error probabilities are given in Figure 3 for an addi-
tive white Gaussian noise channel and a catastrophic partial-
band interference channel with four different values of p.
As p increases, the performance of the Hermitian codes de-
grades relative to that of the RS code.

The dependence of the packet error probability on both
the size of the symbol alphabet M and the code rate r is
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Figure 3.  Packet error probabilities for M=64, rate
1/2 codes, and a catastrophic partial-band interference
channel

illustrated in Figure 4. To help quantify this dependence
we introduce the metric 1), which is defined as the ratio of
the maximum number of errors per packet that can be cor-
rected by the Hermitian code to the maximum number that
can be corrected by the Reed-Solomon code of the same rate
and alphabet size. This metric is suitable for errors-only,
bounded-distance decoding. For a given symbol alphabet
size M and a given code rate r, a Reed-Solomon code can
correct up to t,, = M(1 — r)/2 errors per received word.

Since there are v M Reed-Solomon code words per packet,
up to VMt = MvM(1 —r)/2 errors can be corrected in

a given packet. Even if there are fewer than v/ M, errors in
a packet, the packet does not necessarily decode, since there
may be one or more received words with more than %, er-

rors. For a packet to successfully decode with VMt errors
there must be exactly ¢, errors in each received word. On
the other hand, since there is only one Hermitian code word
per packet, the error-correcting capability of the Hermitian
code is independent of the distribution of errors within the
packet. Manipulating the expression given in [4] and [5] to
couch the result in terms of M and r, we see that the Hermi-
tian code can correct up to MvV/M (1 —7)/2— (M — VM) /4
errors per packet, and thus

VM -1

v=l-gma—n

Values of v for several symbol alphabet sizes and code rates
of interest are given in Table 1. From Figure 4 we see that as
7 increases the relative performance of the Hermitian code
increases. Therefore, as the code rate is reduced or the sym-
bol alphabet size is increased, there is an improvement in the
relative performance of Hermitian codes.

Let py be the value of p for which Hermitian coding and
RS coding achieve a packet error probability of 10~ for the
same value of the quiescent probability of error. Hermitian
coding outperforms RS coding for 0 < p < pg. The param-
eter pg is directly proportional to ¢, and thus py increases
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M=16T M=64 ] M=256
r=3/4 | 0.63 0.78 0.88
r=1/2] 0.81 0.89 0.94
r=17/4"] 0.8/ 0.93 0.96

Table 1. Values of ¢

as the code rate is reduced or the symbol alphabet size is in-
creased. In addition, pg is larger for errors-and-erasures de-
coding or partial-band interference that is not catastrophic.
Although the results are not given in this paper, we have
found that as the strength of the partial-band interference is
reduced the value of pg increases. This finding is consis-
tent with the fact that Hermitian codes provide better perfor-
mance than RS codes for an additive white Gaussian noise
channel.

Up to this point only errors-only decoding has been con-
sidered. It is well known that for FH systems employing
RS codes the performance can be greatly improved by us-
ing errors-and-erasures decoding [9]. At the present time an
errors-and-erasures decoding algorithm for Hermitian codes
has not been published, but our results indicate that errors-
and-erasures decoding provides a performance improvement
for Hermitian codes. If a received symbol is erased the de-
coder does not use the symbol to estimate the transmitted
data. Symbol erasures are based on side information that
provides a measure of reliability of each of the received sym-
bols. Methods of developing side information include parity
bits [10], staggered interleaving [11], Bayesian decision the-
ory [12], and ratio threshold tests [13], but in this paper we
focus on side information developed from test symbols [14].

A number Nrg of binary test symbols are transmitted in
each dwell interval. If more than a certain number -y of these
test symbols are in error, the dwell interval is deemed unre-
liable and all symbols in that dwell interval are erased. If the
side information correctly indicates that partial-band inter-
ference is present in a frequency slot used for transmission,
the interference is said to be detected. If interference that

is in a dwell interval used for transmission is not detected,
a miss is said to occur. A false alarm occurs if the side in-
formation indicates partial-band interference is present in a
frequency slot that has no such interference. The false alarm
probability and detection probability are denoted o and f3, re-
spectively. For binary test symbols and catastrophic partial-
band interference,

Nps N X .
o= () -

=y

and

Nrg
=27Mrs §° Nrg

L=y

The analytical expression for P, the packet error probabil-
ity for Hermitian coding and errors-and-erasures decoding, is
too complicated to present as a single equation. The follow-
ing development is similar to the expressions given in [6] for
RS encoding and errors-and-erasures decoding. First note
that P, = 1— P,, where P, is the probability that the Hermi-
tian word (i.e., the packet) decodes. The probability that the
received word decodes is

A
P.=3), (?)P"(l - p)MIPy(j), M
j=0

where A = | (dg — 1)/L] and P3(j) is the conditional prob-
ability that the received word decodes given that partial-band
interference is present in j of the M frequency slots. If
the symbols in more than A dwell intervals are erased it is
not possible to decode the packet. The probability the re-
ceived word is decoded given that partial-band interference
is present in j of the frequency slots is

Pili) = (Z) BH(1 - BY T Palis ),

.l
7=

where i = max(0,2j — A) and Py(i;j) is the probability
that the received word decodes given that there are j hits and
that ¢ of them are detected. The integer i is chosen so that
the error-correcting capability of the code is not exceeded.
The probability P (i; j) is given by

Py(3;5) = :V_‘, (M;j> o*(1 - )15 Py (s34, ),

s=0

where s* = A — 2j + i and Py (s; 1, ) is the probability that
the code word is correct given j hits, ¢ detected hits, and s
false alarms. Once again the limits of the summation are
chosen to insure that the error-correcting capability of the
code is not exceeded. Finally, the probability P;(s;i, ) is
given by

t* .
Pisiind) =Y (”H tox ”)psu gy R
t=0
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Hermitian code for a catastrophic partial-band interfer-
ence channel with p=1/10

where t* = | (dg — 1 + L(¢ — s))/2] — Lj is the maximum
number of errors the Hermitian code can correct if there are
7 hits, i detected hits, and s false alarms.

The relative performance of errors-only decoding and
errors-and-erasures decoding for Hermitian codes with M =
64 is illustrated in Figure 5. For each value of NTg the value
of the threshold v is chosen to provide the smallest packet
error probability. The use of side information dramatically
improves the system performance even for Nrs = 4, and
the performance for N7g = 12 and y = 3 is almost identical
to the performance of a system that has perfect side informa-
tion (i.e.,a =0and 8 = 1).

The performance of FH systems employing errors-and-
erasures decoding is shown in Figure 6 for different values
of p. The results in Figure 6 are for Nrg = 12 and vy = 3.
These values of Nrg and «y provide the best performance
over a wide range of quiescent error probabilities. Since the
error probability for each system depends on the parameters
(a and P) the relative performance of the two systems re-
mains fairly constant as Nrg and -y are varied. By compar-
ing Figure 3 and Figure 6 we see that, as expected, there is
an improvement in the performance of both systems by us-
ing errors-and-erasures decoding rather than errors-only de-
coding. The performance of Hermitian codes also improves
relative to RS codes if errors-and-erasures (EE) decoding is
used instead of errors-only (EO) decoding. From Figure 6
we see that for errors-and-erasures decoding, M = 64, and
r = 1/2 the value of pgy is greater than 0.2. Some values
of py are given in Table 2. The results in Table 2 demon-
strate that both 1 and pp increase as M is increased, and
that ppg is larger for errors-and-erasures decoding than it is
for errors-only decoding.
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